With a focus on Scandinavia

SCANDINAVIAN/ SPECIAL AREA STUDIES
A large range of courses are offered in subjects such as Scandinavian culture and society and global issues of contemporary interest.

Courses cover topics such as environment and sustainability, Swedish social policy, education and social anthropology in Sweden, the Viking age, Scandinavian models of equity, diversity of the world languages, sustainable eating, critical animal studies, social innovation and more.

SWEDISH LANGUAGE
An introductory Swedish course is offered to all exchange students during the orientation weeks, before the start of the academic semester. Exchange students can also apply to regular Swedish language courses as part of their study plan. Courses are offered from level 1–6.

SWEDISH-TAUGHT COURSES (EDUCATION IN SWEDISH)
Students with a background in Scandinavian studies or who have studied in a Nordic school system may be able to apply for courses with Swedish as the language of instruction.

Admission Requirements

LANGUAGE REQUIREMENTS
It is recommended that your level of English language proficiency is equivalent to IELTS 6.5/TOEFL 90.

The Swedish language requirement for exchange students wishing to study Swedish-taught courses is “Svenska 3” or equivalent.

SPECIFIC REQUIREMENTS
The admission requirements (prerequisites) for each course can be found on the websites of the relevant department. Many courses require at least 1 year of full-time studies within the subject area.

• Faculty of Law requires 2 years of prior studies in the subject.
• School of Architecture requires 3 years of prior studies in the subject. Portfolio is required to apply.
• Courses at the School of Industrial Design at Lund University are only open to students enrolled at an Industrial Design program at their home university. Portfolio is required to apply.
• Read more about specific department requirements: www.lunduniversity.lu.se/exchange-requirements

RESTRICTIONS AND LIMITATIONS
• There is a limited availability of courses at the Lund University School of Economics and Management (LUSEM). Students applying through a university-wide agreement can at most be accepted to 15 credits at LUSEM per semester. Other conditions apply for students applying through LUSEM specific agreements.
• The Faculty of Medicine, the Faculty of Performing Arts and the Malmö Art Academy mainly admit students within specific faculty/department agreements.
• Courses in Journalism are not available.
• Note, not all courses taught in English are open to exchange students.

COURSE LOAD
Exchange students are expected to study full-time, 30 credits/semester (usually 4 courses of 7,5 credits each). Note that full-time studies is a condition for getting a residence permit from the Swedish Migration Agency.

FOLLOW US
Facebook, LinkedIn, Twitter, Instagram, YouTube, The Conversation

LUND UNIVERSITY
PO Box 117
SE-221 00 Lund
Sweden
Telephone +46 46 222 00 00
www.lunduniversity.lu.se
A MEETING PLACE FOR STUDENTS FROM AROUND THE WORLD
Lund University is a very popular student exchange destination in Europe and receives more than 1800 exchange students per year from across the globe.

The University has exchange agreements with more than 500 universities in over 70 countries worldwide. Students can come to Lund University for exchange at both Bachelor’s and Master’s levels. Exchange students do not pay tuition fees to Lund University.

WIDE SELECTION OF COURSES
Lund University offers more than 700 courses across a wide range of subjects, that are taught in English and suitable for exchange students.

• Find courses in English per Faculty: www.lunduniversity.lu.se/exchange-courses
• Special Area Studies (SAS) in English: Scandinavian studies, European studies and Global issues are specially designed for exchange students: www.lunduniversity.lu.se/sas
• Swedish Language Courses for exchange students (SVE): Swedish Language Courses can be counted towards studies leading to a Swedish degree. www.lunduniversity.lu.se/SE

EXCHANGE STUDIES INFORMATION
www.lunduniversity.lu.se/exchange

ACADEMIC CALENDAR
www.lunduniversity.lu.se/academic-calendar

LUND UNIVERSITY WEB
www.lunduniversity.lu.se

APPLYING FOR EXCHANGE STUDIES

Exchange studies implies that your home university has a formal exchange agreement with Lund University. The agreement can be a university-wide agreement or a specific faculty-department exchange agreement. The first step is to apply through your home university to be nominated for an exchange. You apply through your university’s International Office or an international coordinator at your faculty.

Students nominated for exchange to Lund University select courses during the following application periods:

1 April–25 April for studies starting autumn semester
1 October–25 October for studies starting spring semester

Economics and Management

• Business Administration: accounting, corporate finance, organisation, strategy, management, entrepreneurship, marketing, international business
• Business Law
• Economics: microeconomics, international economics, theory and microeconomics, public economics including labour and health economics
• Economic History: economic and financial development, economic demography
• Informatics/Information Systems: computer science, human-computer interaction, information systems, database design, sourcing strategies, information systems security
• Statistics: data mining, statistical computing, multivariate methods, Bayesian methods, financial statistics

Science

• Astronomy and Astrophysics
• Biology: animal ecology, aquatic ecology, conservation biology, general biology, plant science
• Bioinformatics
• Chemistry: analytical chemistry, biochemistry, chemical physics, inorganic chemistry, structural biology, organic chemistry, physical chemistry, theoretical chemistry
• Geology: pedology, geochronology, palaeontology, geophysical and geochronology, geology, marine geology
• Mathematics: pure mathematics, applied mathematics, mathematical statistics, numerical analysis
• Molecular Biology: general molecular biology, medical biology, microbiology, molecular genetics and biotechnology
• Physical Geography, Ecosystem Science and Geographic Information Systems
• Physics: atomic physics, combustion physics, computational biology and biological physics, materials science, meteorology and atmospheric science, nanoscience, nuclear physics, particle physics, precision radiation science, theoretical physics

Law

• Company Law
• Criminal Law
• Environmental Law
• EU Law
• International Human Rights Law
• Legal History
• Maritime and Transport Law
• Moon Court
• Private International Law
• Swedish Law

Engineering

• Biomedical Engineering: biomedical physics, biomaterials and rehabilitation, signal and image analysis
• Biotechnology: food, molecular biology, biotechnology, biophysics
• Chemical Engineering: materials, process design, pharmacy
• Civil Engineering: infrastructure engineering, structural analysis and design, construction management, building technology, road and traffic engineering, water resources
• Computer Science and Engineering: image and computer graphics, design of processors and digital systems, embedded systems, communication systems, software, systems and software engineering, software, systems and sensors
• Electrical Engineering: communication systems, energy and environment, photonics and high-frequency electronics, integrated systems, biophysical engineering, production logistics and control, business and automation, signals and sensors, images and computer graphics, software
• Engineering Physics, Mathematics and Nanotechnology: astrophysics – physics and technology, computational mechanics, biological, ecological and medical modelling, computer and information systems, energy systems, photonics, financial engineering, high-frequency and microwave, nanoelectronics, nanotechnology, control systems, theoretical physics, images and sensors, sensors and actuators, sensors and systems, signals and sensors, sensors and systems, signals and sensors
• Environmental Engineering: energy systems, process design, water resources engineering, environmental systems
• Industrial Management and Engineering: business and innovation, financial engineering and risk management, supply chain management, production engineering, software-intensive systems
• Information and Communication Engineering: communication systems, security systems and control, software, communications
• Mechanical Engineering: mechanical engineering, mechatronics, robotics, micro-electromechanical systems, design, control systems, design, control and automation, sensors and actuators, control theory and automation, signals and sensors, images and computer graphics, software
• Civil Engineering: infrastructure engineering, structural analysis and design, construction management, building technology, road and traffic engineering, water resources
• Computer Science and Engineering: image and computer graphics, design of processors and digital systems, embedded systems, communication systems, software, systems and software engineering, software, systems and sensors
• Electrical Engineering: communication systems, energy and environment, photonics and high-frequency electronics, integrated systems, biophysical engineering, production logistics and control, business and automation, signals and sensors, images and computer graphics, software
• Engineering Physics, Mathematics and Nanotechnology: astrophysics – physics and technology, computational mechanics, biological, ecological and medical modelling, computer and information systems, energy systems, photonics, financial engineering, high-frequency and microwave, nanoelectronics, nanotechnology, control systems, theoretical physics, images and sensors, sensors and actuators, sensors and systems, signals and sensors
• Environmental Engineering: energy systems, process design, water resources engineering, environmental systems
• Industrial Management and Engineering: business and innovation, financial engineering and risk management, supply chain management, production engineering, software-intensive systems
• Information and Communication Engineering: communication systems, security systems and control, software, communications
• Mechanical Engineering: mechanical engineering, mechatronics, robotics, micro-electromechanical systems, design, control systems, design, control and automation, sensors and actuators, control theory and automation, signals and sensors, images and computer graphics, software
• Civil Engineering: infrastructure engineering, structural analysis and design, construction management, building technology, road and traffic engineering, water resources
• Computer Science and Engineering: image and computer graphics, design of processors and digital systems, embedded systems, communication systems, software, systems and software engineering, software, systems and sensors
• Electrical Engineering: communication systems, energy and environment, photonics and high-frequency electronics, integrated systems, biophysical engineering, production logistics and control, business and automation, signals and sensors, images and computer graphics, software
• Engineering Physics, Mathematics and Nanotechnology: astrophysics – physics and technology, computational mechanics, biological, ecological and medical modelling, computer and information systems, energy systems, photonics, financial engineering, high-frequency and microwave, nanoelectronics, nanotechnology, control systems, theoretical physics, images and sensors, sensors and actuators, sensors and systems, signals and sensors
• Environmental Engineering: energy systems, process design, water resources engineering, environmental systems
• Industrial Management and Engineering: business and innovation, financial engineering and risk management, supply chain management, production engineering, software-intensive systems
• Information and Communication Engineering: communication systems, security systems and control, software, communications
• Mechanical Engineering: mechanical engineering, mechatronics, robotics, micro-electromechanical systems, design, control systems, design, control and automation, sensors and actuators, control theory and automation, signals and sensors, images and computer graphics, software
• Civil Engineering: infrastructure engineering, structural analysis and design, construction management, building technology, road and traffic engineering, water resources
• Computer Science and Engineering: image and computer graphics, design of processors and digital systems, embedded systems, communication systems, software, systems and software engineering, software, systems and sensors
• Electrical Engineering: communication systems, energy and environment, photonics and high-frequency electronics, integrated systems, biophysical engineering, production logistics and control, business and automation, signals and sensors, images and computer graphics, software
• Engineering Physics, Mathematics and Nanotechnology: astrophysics – physics and technology, computational mechanics, biological, ecological and medical modelling, computer and information systems, energy systems, photonics, financial engineering, high-frequency and microwave, nanoelectronics, nanotechnology, control systems, theoretical physics, images and sensors, sensors and actuors, sensors and systems, signals and sensors
• Environmental Engineering: energy systems, process design, water resources engineering, environmental systems
• Industrial Management and Engineering: business and innovation, financial engineering and risk management, supply chain management, production engineering, software-intensive systems
• Information and Communication Engineering: communication systems, security systems and control, software, communications
• Mechanical Engineering: mechanical engineering, mechatronics, robotics, micro-electromechanical systems, design, control systems, design, control and automation, sensors and actuators, control theory and automation, signals and sensors, images and computer graphics, software
• Civil Engineering: infrastructure engineering, structural analysis and design, construction management, building technology, road and traffic engineering, water resources
• Computer Science and Engineering: image and computer graphics, design of processors and digital systems, embedded systems, communication systems, software, systems and software engineering, software, systems and sensors
• Electrical Engineering: communication systems, energy and environment, photonics and high-frequency electronics, integrated systems, biophysical engineering, production logistics and control, business and automation, signals and sensors, images and computer graphics, software
• Engineering Physics, Mathematics and Nanotechnology: astrophysics – physics and technology, computational mechanics, biological, ecological and medical modelling, computer and information systems, energy systems, photonics, financial engineering, high-frequency and microwave, nanoelectronics, nanotechnology, control systems, theoretical physics, images and sensors, sensors and actuors, sensors and systems, signals and sensors
• Environmental Engineering: energy systems, process design, water resources engineering, environmental systems
• Industrial Management and Engineering: business and innovation, financial engineering and risk management, supply chain management, production engineering, software-intensive systems
• Information and Communication Engineering: communication systems, security systems and control, software, communications
• Mechanical Engineering: mechanical engineering, mechatronics, robotics, micro-electromechanical systems, design, control systems, design, control and automation, sensors and actuators, control theory and automation, signals and sensors, images and computer graphics, software

Architecture and Design

• Architectural Design: advanced architectural design, sustainable urban design
• Industrial Design

Note that a portfolio is required for studies in Industrial Design and Architecture.